7-Flute, Extra High Performance, Finisher Endmills, Square, Corner Radius \& Chip Control, 40 Degree Helix

- More Flutes in the cut means greater production. For added tool life select tools with a Corner Radius
- Use with High Efficiency Machining Technology for best results. See pages 208-212.
- These Extra High Performance tools can be found on pages 86-90.

7-Fute Finshers speeds \because Feeds													
Material	Grades	Cut Type	Axial DOC	Radial DOC	\# of Flutes	SFM	Feed by Endmill Diameter (IPT)						
							3/16	1/4	3/8	1/2	5/8	3/4	1
							(.1875)	(.2500)	(.3750)	(.5000)	.6250)	(.7500)	(1.000)
Low Carbon Steels <= 38 Rc	$\begin{aligned} & \text { 1018, 1020, 12L14, 5120, } \\ & 8620 \end{aligned}$	Peripheral HEM	<=3 \times D	. $08 \times$ D	7	485	. 0028	. 0038	. 0056	. 0075	. 0094	. 0113	. 0150
			$>3 \mathrm{xD}-4 \mathrm{xD}$. $08 \times$ D	7	485	. 0025	. 0034	. 0051	. 0068	. 0084	. 0101	. 0135
			$>4 \times D-5 \times D$. $08 \times$ D	7	465	. 0023	. 0030	. 0045	. 0060	. 0075	. 0090	. 0120
		Finish	$3 \times \mathrm{D}$. $015 \times$ D	7	420	. 0011	. 0014	. 0021	. 0028	. 0035	. 0042	. 0056
Medium Carbon Steels $<=48$ HRC	1045, 4140, 4340, 5140	Peripheral HEM	$<=3 \times D$. $08 \times$ D	7	450	. 0027	. 0036	. 0053	. 0071	. 0089	. 0107	. 0142
			$>3 \times \mathrm{D}-4 \times \mathrm{D}$. $08 \times$ D	7	450	. 0024	. 0032	. 0048	. 0064	. 0080	. 0096	. 0128
			$>4 \times D-5 \times D$. $08 \times$ D	7	425	. 0021	. 0028	. 0043	. 0057	. 0071	. 0085	. 0114
		Finish	$3 \times \mathrm{D}$. $015 \times$ D	7	390	. 0009	. 0013	. 0019	. 0025	. 0031	. 0038	0050
Tool and Die Steels <= 48 Rc	A2, D2, 01, S7, P20, H13	Peripheral HEM	$<=3 \times D$. $08 \times$ D	7	420	. 0024	. 0032	. 0048	. 0064	. 0080	. 0096	. 0128
			$>3 \mathrm{xD}-4 \times \mathrm{D}$. $08 \times$ D	7	420	. 0022	. 0029	. 0043	. 0058	. 0072	. 0086	. 0115
			$>4 \times D-5 \times D$. $08 \times$ D	7	395	. 0019	. 0026	. 0038	. 0051	. 0064	. 0077	. 0102
		Finish	$3 \times \mathrm{D}$. $015 \times$ D	7	365	. 0008	. 0011	. 0016	. 0021	. 0026	. 0032	. 0042
M - Stainless Steels													
Austenitic Stainless Steels, FeNi Alloys	303, 304, 316, Invar, Kovar	Peripheral HEM	<=3 \times D	. $08 \times \mathrm{D}$	7	450	. 0024	. 0032	. 0048	. 0064	. 0080	. 0096	. 0128
			$>3 \mathrm{xD}-4 \times \mathrm{D}$. $08 \times$ D	7	440	. 0022	. 0029	. 0043	. 0058	. 0072	. 0086	. 0115
			$>4 \times D-5 \times D$. $07 \times$ D	7	425	. 0019	. 0026	. 0038	. 0051	. 0064	. 0077	. 0102
		Finish	$3 \times \mathrm{D}$. $015 \times$ D	7	390	. 0009	. 0012	. 0018	. 0024	. 0030	. 0036	. 0048
Martensitic \& Ferritic Stainless Steels	410, 416, 440	Peripheral HEM	<=3 \times D	. $08 \times$ D	7	450	. 0028	. 0038	. 0056	. 0075	. 0094	. 0113	. 0150
			$>3 \times \mathrm{D}-4 \times \mathrm{D}$. $08 \times$ D	7	450	. 0025	. 0034	. 0051	. 0068	. 0084	. 0101	. 0135
			$>4 \times D-5 \times D$. $08 \times$ D	7	425	. 0023	. 0030	. 0045	. 0060	. 0075	. 0090	. 0120
		Finish	$3 \times \mathrm{D}$. $015 \times$ D	7	390	. 0009	. 0013	. 0019	. 0025	. 0031	. 0038	. 0050
Precipitation Hardening	17-4, 15-5, 13-8	Peripheral HEM	<=3 \times D	. $08 \times$ D	7	440	. 0023	. 0031	. 0047	. 0062	. 0078	. 0093	. 0124
			$>3 \mathrm{xD}-4 \mathrm{xD}$. $08 \times$ D	7	440	. 0021	. 0028	. 0042	. 0056	. 0070	. 0084	. 0112
			$>4 \times D-5 \times D$. $07 \times$ D	7	415	. 0019	. 0025	. 0037	. 0050	. 0062	. 0074	. 0099
		Finish	$3 \times \mathrm{D}$. $015 \times$ D	7	380	. 0008	. 0010	. 0015	. 0020	. 0025	. 0030	. 0040
K - Cast Irons													
Gray	ASTM-A48 Class 20, 25, $30,35 \& 40$	Peripheral HEM	<=3 \times D	. $1 \times \mathrm{D}$	7	400	. 0027	. 0036	. 0054	. 0072	. 0090	. 0108	. 0144
			$>3 \mathrm{xD}-4 \mathrm{xD}$. $08 \times \mathrm{D}$	7	400	. 0024	. 0032	. 0049	. 0065	. 0081	. 0097	. 0130
			$>4 \mathrm{xD}-5 \mathrm{xD}$. $08 \times$ D	7	390	. 0022	. 0029	. 0043	. 0058	. 0072	. 0086	. 0115
		Finish	$3 \times \mathrm{D}$. $015 \times$ D	7	450	. 0010	. 0013	. 0020	. 0026	. 0033	. 0039	. 0052
Cast Iron	Malleable	Peripheral HEM	<=3 \times D	. $08 \times$ D	7	390	. 0022	. 0029	. 0044	. 0058	. 0073	. 0087	. 0116
			$>3 \times \mathrm{D}-4 \times \mathrm{D}$. $08 \times$ D	7	390	. 0020	. 0026	. 0039	. 0052	. 0065	. 0078	. 0104
			$>4 \times D-5 \times D$. $08 \times$ D	7	375	. 0017	. 0023	. 0035	. 0046	. 0058	. 0070	. 0093
		Finish	$3 \times \mathrm{D}$. $015 \times$ D	7	350	. 0008	. 0011	. 0016	. 0021	. 0026	. 0032	0042
S - High Temp Alloys													
Titanium Alloys	6AI-4V, 6-2-4	Peripheral HEM	<=3 \times D	. $1 \times \mathrm{D}$	7	405	. 0015	. 0021	. 0031	. 0041	. 0051	. 0062	. 0082
			$>3 \mathrm{xD}-4 \times \mathrm{D}$. $08 \times$ D	7	405	. 0014	. 0018	. 0028	. 0037	. 0046	. 0055	. 0074
			$>4 \times D-5 \times D$. $08 \times$ D	7	390	. 0012	. 0016	. 0025	. 0033	. 0041	. 0049	. 0066
		Finish	$3 \times \mathrm{D}$. $015 \times$ D	7	350	. 0006	. 0008	. 0012	. 0016	. 0020	. 0024	. 0032
Difficult to Machine Titanium Alloys	10-2-3	Peripheral HEM	<=2.5 ${ }^{\text {D D }}$. $08 \times$ D	7	335	. 0015	. 0020	. 0030	. 0040	. 0050	. 0060	. 0080
			$>2.5 \times \mathrm{D}-3.5 \mathrm{xD}$. $07 \times$ D	7	325	. 0014	. 0018	. 0027	. 0036	. 0045	. 0054	. 0072
			>3.5xD-4xD	. $06 \times$ D	7	305	. 0012	. 0016	. 0024	. 0032	. 0040	. 0048	. 0064
		Finish	$3 \times \mathrm{D}$. $01 \times$ D	7	290	. 0005	. 0007	. 0011	. 0014	. 0018	. 0021	. 0028
Hastalloy, Waspalloy		Peripheral HEM	<=1.5 \times D	. $08 \times$ D	7	100	. 0035	. 0047	. 0071	. 0094	. 0118	. 0141	. 0188
			$>1.5 \times \mathrm{D}-2.5 \times \mathrm{D}$. $08 \times$ D	7	95	. 0032	. 0042	. 0063	. 0085	. 0106	. 0127	. 0169
			$>2.5 \times \mathrm{D}-3.5 \times \mathrm{D}$. $06 \times$ D	7	85	. 0028	. 0038	. 0056	. 0075	. 0094	. 0113	. 0150
		Finish	$2 \times \mathrm{D}$. $01 \times$ D	7	90	. 0019	. 0025	. 0038	. 0050	. 0063	. 0075	. 0100
Inconel 718, Rene 88		Peripheral HEM	<=1.5 \times D	. $07 \times$ D	7	95	. 0035	. 0047	. 0070	. 0093	. 0116	. 0140	. 0186
			$>1.5 \mathrm{xD}-2.5 \mathrm{xD}$. $06 \times$ D	7	90	. 0031	. 0042	. 0063	. 0084	. 0105	. 0126	. 0167
			$>2.5 \times \mathrm{D}-3 \times \mathrm{D}$. $06 \times$ D	7	85	. 0028	. 0037	. 0056	. 0074	. 0093	. 0112	. 0149
		Finish	$2 \times \mathrm{D}$. $01 \times$ D	7	85	. 0018	. 0024	. 0036	. 0048	. 0060	. 0072	. 0096

D = Tool Diameter

HEM = Hight Efficiency Machining

