13-Flute, Extra High Performance, Finisher Endmills, Corner Radius \& Chip Control, 30 Degree Helix

- More Flutes in the cut means greater production. With an extra solid core get extra rigidity and extended tool life.
- Use with High Efficiency Machining Technology for best results. See pages 208-212.
- These Extra High Performance tools can be found on pages 98-101.

13-Flute Finishers Speeds \& Feeds

Material	Grades	Cut	Axial	Radial	\# of Flutes	SFM	Feed by Endmill Diameter (IPT)				
							1/2	5/8	3/4	1	11/4
							(.5000)	(.6250)	(.7500)	(1.000)	(1.250)
P - Steels											
$\begin{aligned} & \text { Low Carbon Steels <= } \\ & 38 \text { Rc } \end{aligned}$	$\begin{aligned} & 1018,1020,12 L 14,5120, \\ & 8620 \end{aligned}$	Peripheral - HEM	$<2 \times D$. $07 \times \mathrm{D}$	13	450	. 0044	. 0055	. 0066	. 0088	. 0066
			2.5xD	. $07 \times$ D	13	430	. 0039	. 0049	. 0059	. 0078	0059
			3xD	. $07 \times$ D	13	420	. 0036	. 0045	. 0054	. 0072	0054
			$3.5 \times \mathrm{D}$. $07 \times \mathrm{D}$	13	410	. 0034	. 0043	. 0051	. 0068	. 0051
		Finish	$3 \times \mathrm{D}$. $01 \times$ D	13	395	. 0017	. 0021	. 0026	. 0034	. 0026
```Medium Carbon Steels <= 48 HRC```	1045, 4140, 4340, 5140	Peripheral - HEM	$<2 \times$ D	. $06 \times$ D	13	405	. 0044	. 0055	. 0066	. 0088	. 0066
			$2.5 \times \mathrm{D}$	. $06 \times \mathrm{D}$	13	405	. 0041	. 0051	. 0062	. 0082	. 0062
			3xD	. $05 \times \mathrm{D}$	13	405	. 0039	. 0049	. 0059	. 0078	. 0059
			$3.5 \times \mathrm{D}$	. $05 \times \mathrm{D}$	13	405	. 0036	. 0045	. 0054	. 0072	. 0054
		Finish	$3 \times \mathrm{D}$	. $01 \times \mathrm{D}$	13	370	. 0017	. 0021	. 0026	. 0034	0026
$\begin{aligned} & \text { Tool and Die Steels <= } \\ & 48 \text { Rc } \end{aligned}$	A2, D2, 01, S7, P20, H13	Peripheral - HEM	$<2 \times$ D	. $06 \times$ D	13	420	. 0045	. 0056	. 0068	. 0090	. 0068
			2.5xD	. $06 \times \mathrm{D}$	13	420	. 0040	. 0050	. 0060	. 0080	. 0060
			3xD	. $05 \times \mathrm{D}$	13	415	. 0037	. 0046	. 0056	. 0074	. 0056
			$3.5 \times \mathrm{D}$	. $05 \times \mathrm{D}$	13	415	. 0035	. 0044	. 0053	. 0070	0053
		Finish	$3 \times \mathrm{D}$	. $01 \times$ D	13	385	. 0015	. 0019	. 0023	. 0030	0023
M - Stainless Steels											
Austenitic Stainless Steels, FeNi Alloys	303, 304, 316, Invar, Kovar	Peripheral - HEM	$<2 \times D$	. $06 \times$ D	13	450	. 0041	. 0051	. 0062	. 0082	0062
			$2.5 \times \mathrm{D}$	. $06 \times \mathrm{D}$	13	450	. 0040	. 0050	. 0060	. 0080	. 0060
			3xD	. $05 \times \mathrm{D}$	13	450	. 0037	. 0046	. 0056	. 0074	. 0056
			$3.5 \times \mathrm{D}$	. $05 \times \mathrm{D}$	13	445	. 0035	. 0044	. 0053	. 0070	. 0053
		Finish	$3 \times \mathrm{D}$	. $01 \times$ D	13	415	. 0015	. 0019	. 0023	. 0030	. 0023
Martensitic \& Ferritic Stainless Steels	410, 416, 440	Peripheral - HEM	$<2 \times D$	. $06 \times$ D	13	460	. 0050	. 0063	. 0075	. 0100	. 0075
			2.5xD	. $06 \times$ D	13	460	. 0048	. 0060	. 0072	. 0096	. 0072
			3xD	. $06 \times$ D	13	450	. 0040	. 0050	. 0060	. 0080	. 0060
			$3.5 \times \mathrm{D}$	. $06 \times$ D	13	445	. 0035	. 0044	. 0053	. 0070	0053
		Finish	$3 \times \mathrm{D}$	. $01 \times$ D	13	390	. 0018	. 0023	. 0027	. 0036	0027
Precipitation Hardening Stainless Steels	17-4, 15-5, 13-8	Peripheral - HEM	$<2 \times D$	. $06 \times$ D	13	440	. 0045	. 0056	. 0068	. 0090	. 0068
			2.5xD	. $06 \times$ D	13	440	. 0041	. 0051	. 0062	. 0082	. 0062
			3xD	. $05 \times \mathrm{D}$	13	435	. 0038	. 0048	. 0057	. 0076	. 0057
			$3.5 \times \mathrm{D}$	. $05 \times \mathrm{D}$	13	435	. 0034	. 0043	. 0051	. 0068	. 0051
		Finish	$3 \times \mathrm{D}$	. $01 \times \mathrm{D}$	13	400	. 0017	. 0021	0026	. 0034	0026
K - Cast lrons											
Gray	$\begin{aligned} & \text { ASTM-A48 Class 20, 25, } \\ & 30,35 \& 40 \end{aligned}$	Peripheral - HEM	<2 x D	. $07 \times \mathrm{D}$	13	370	. 0045	. 0056	. 0068	. 0090	0068
			2.5xD	. $07 \times \mathrm{D}$	13	370	. 0040	. 0050	. 0060	. 0080	. 0060
			3xD	. $07 \times$ D	13	360	. 0034	. 0043	. 0051	. 0068	. 0051
			3.5 xD	. $06 \times$ D	13	360	. 0030	. 0038	. 0045	. 0060	. 0045
		Finish	$3 \times \mathrm{D}$	. $01 \times \mathrm{D}$	13	365	. 0020	. 0025	. 0030	. 0040	. 0030
Cast Iron	Malleable	Peripheral - HEM	$<2 \times D$	. $07 \times \mathrm{D}$	13	380	. 0048	. 0060	. 0072	. 0096	. 0072
			2.5xD	. $07 \times \mathrm{D}$	13	380	. 0042	. 0053	. 0063	. 0084	. 0063
			3xD	. $07 \times$ D	13	365	. 0039	. 0049	. 0059	. 0078	. 0059
			$3.5 \times \mathrm{D}$	. $07 \times$ D	13	365	. 0036	. 0045	. 0054	. 0072	. 0054
		Finish	$3 \times \mathrm{D}$	. $01 \times$ D	13	340	. 0017	. 0021	. 0026	. 0034	. 0026
S - High Temp Alloys											
Titanium Alloys	6Al-4V, 6-2-4	Peripheral - HEM	<2 x D	. $08 \times \mathrm{D}$	13	395	. 0050	. 0063	. 0075	. 0100	0075
			2.5xD	. $07 \times$ D	13	390	. 0045	. 0056	. 0068	. 0090	. 0068
			3xD	. $06 \times$ D	13	380	. 0041	. 0051	. 0062	. 0082	. 0062
			$3.5 \times \mathrm{D}$	. $06 \times$ D	13	380	. 0034	. 0043	. 0051	. 0068	0051
		Finish	$3 \times \mathrm{D}$	. $015 \times \mathrm{D}$	13	355	. 0022	. 0028	. 0033	. 0044	0033
Difficult to machine titanium alloys	10-2-3	Peripheral - HEM	$<2 \times D$	0.06	13	350	. 0050	. 0063	. 0075	. 0100	. 0075
			2.5xD	0.06	13	330	. 0036	. 0045	. 0054	. 0072	. 0054
			3xD	0.055	13	315	. 0035	. 0044	. 0053	. 0070	. 0053
			$3.5 \times \mathrm{D}$	0.05	13	310	. 0032	. 0040	. 0048	. 0064	. 0048
		Finish	$3 \times \mathrm{D}$	. $01 \times \mathrm{D}$	13	300	. 0017	. 0021	. 0026	. 0034	. 0026
Hastalloy, Waspalloy		Peripheral - HEM	$<2 \times D$	. $07 \times \mathrm{D}$	13	105	. 0071	. 0089	. 0107	. 0142	. 0107
			2.5xD	. $065 \times$ D	13	100	. 0064	. 0080	. 0096	. 0128	. 0096
			3xD	. $055 \times$ D	13	90	. 0062	. 0078	. 0093	. 0124	. 0093
			3.5 xD	. $05 \times \mathrm{D}$	13	90	. 0057	. 0071	. 0086	. 0114	. 0086
		Finish	$3 \times \mathrm{D}$	. $01 \times \mathrm{D}$	13	90	. 0044	. 0055	. 0066	. 0088	. 0066
Inconel 718, Rene 88		Peripheral - HEM	$<2 \times D$	. $06 \times$ D	13	100	. 0052	. 0065	. 0078	. 0104	. 0078
			2.5xD	. $05 \times \mathrm{D}$	13	95	. 0052	. 0065	. 0078	. 0104	. 0078
			3xD	. $05 \times \mathrm{D}$	13	95	. 0048	. 0060	. 0072	. 0096	. 0072
			$3.5 \times \mathrm{D}$	. $04 \times$ D	13	95	. 0048	. 0060	. 0072	. 0096	. 0072
		Finish	$3 \times \mathrm{D}$	. $01 \times$ D	13	90	. 0023	. 0029	. 0035	. 0046	. 0035

[^0]
[^0]:    $\mathrm{D}=$ tool diameter.

