TuffCut® AL / X-AL

136 / 138 / 138N / 138R / 138NR Recommended Cutting Data - Profile Milling Inch

Workpiece Material Group	I S O	Coolant • Preferred	Profile Milling (ae)				End Mill Diameter								
			The second	Apo	App	Acc.	1/8*	3/16*	1/4*	5/16	3/8	1/2	5/8	3/4	1
			10%	20%	30%	50%	ae > .3D use <1D ap ae < .2D use <2D ap *Profile Milling at > 25% ap is not recommended for diameters 1/4" and below.								
		8	3.8	3.1	2	1	Multiply fz by this Factor based on ae. When finishing, use the standard fz per chart below. Only add chip thinning when roughing or semi-finishing.								
		Max.	vc - SFM				fz - in/tooth								
Non-Ferrous - Aluminum / Aluminum Alloys < 10% Si	N	•	2000	1800	1200	900	.0025	.0037	.0050	.0062	.0075	.0100	.0125	.0150	.0200
Non-Ferrous - Aluminum / Aluminum Alloys > 10% Si	N	•	1500	1200	1000	800	.0025	.0037	.0050	.0062	.0075	.0100	.0125	.0150	.0200
Non-Ferrous - Brass	N	•	900	800	600	500	.0025	.0037	.0050	.0062	.0075	.0100	.0125	.0150	.0200
Non-Ferrous - Cu/Cu Alloys / Magnesium	N	•	1000	800	600	500	.0025	.0037	.0050	.0062	.0075	.0100	.0125	.0150	.0200
Non-Ferrous - Plastics	N	•	900	800	600	500	.0025	.0037	.0050	.0062	.0075	.0100	.0125	.0150	.0200

Above 20,000 RPM, Tool Balancing Required

136 / 138 / 138N / 138R / 138NR Recommended Cutting Data - Profile Milling Metric

Above 20,000 RPM, Tool Balancing Required

Spindle Maximum - Should the calculated spindle speed be more than your actual spindle maximum, use this formula: (Calculated Feed x Spindle Maximum)/Calculated Speed