DRILL-FIX DFT

DFT Applications

Solid Carbide Drills

Combination Tools

Modular Drills

QPV Drills

Twist Drills/ Taps & Dies

Rotating Boring Counterboring Tools

Special Tooling/ Holemaking Adapters Tech Data

Toolholding Systems

Index

graphia despreed	hardness/ type	starting recommendations for feed (ipr) based on insert size										
workpiece		geometry	grade	sfm	DFT03	DFT05	DFT06	DFT07	DFT09	geometry	grade	DFT11
material group												
low-carbon steel (<.25% C)	(<220 HB)	DFT-HP	KC7140	500 900 1100	.0020 . 0030 .0040	.0020 . 0035 .0045	.0025 . 0040 .0055	.0030 . 0055 .0070	.0040 . 0075 .0100	DFT-HD	KC7215	.0050 .0090 .0120
free-machining steel	(<275 HB)	DFT-MD	KC7935	450 830 1000	.0020 . 0030 .0040	.0020 . 0035 .0045	.0025 . 0040 .0055	.0030 . 0055 .0070	.0040 .0075 .0100	DFT-HD	KC7935	.0050 .0090 .0120
medium and high plain-carbon, alloy, and tool steels	(≤330 HB)	DFT-MD	KC7935	420 750 900	.0020 . 0030 .0040	.0020 . 0035 .0045	.0025 . 0040 .0055	.0030 . 0055 .0070	.0040 .0075 .0100	DFT-HD	KC7936	.0050 .0090 .0120
medium and high plain-carbon, alloy, and tool steels	(340- 450 HB)	DFT-MD	KC7935	340 500 620	.0020 .0030 .0040	.0020 . 0035 .0045	.0025 . 0040 .0055	.0030 . 0055 .0070	.0040 .0075 .0100	DFT-HD	KC7937	.0050 .0090 .0120
ferritic, martensitic, and PH stainless steels	(<375 HB)	DFT-LD	KC720	325 550 700	.0010 . 0020 .0035	.0010 . 0020 .0035	.0020 . 0035 .0050	.0025 . 0040 .0065	.0030 . 0045 .0070	DFT-HD	KC720	.0035 .0050 .0080
austenitic stainless steel	(135- 275 HB)	DFT-HP	KC7140	325 520 620	.0015 . 0020 .0035	.0025 .0040 .0050	.0025 . 0045 .0060	.0030 . 0050 .0070	.0035 . 0060 .0080	DFT-HD	KC720	.0035 .0050 .0080
ductile (nodular) and malleable cast irons	(120- 320 HB)	DFT-GD	KC7935	350 550 750	.0015 . 0020 .0035	.0020 .0040 .0055	.0035 . 0050 .0070	.0040 . 0060 .0080	.0040 . 0080 .0100	DFT-HD	KC7215	.0080 .0100 .0150
gray cast irons	(120- 320 HB)	DFT-GD	KC7935	400 600 800	.0015 .0020 .0035	.0020 .0040 .0055	.0035 . 0050 .0070	.0040 . 0060 .0080	.0040 .0080 .0100	DFT-HD	KC7215	.0080 .0100 .0150
free-machining and low-silicon aluminum alloys	hypoeutectic (<12.2% Si)	DFT-HP	KC7215	1,300 1,600 2,300	.0020 . 0020 .0030	.0025 . 0030 .0035	.0030 . 0040 .0055	.0040 . 0050 .0065	.0050 .0060 .0075	DFT-HD	KC7215	.0050 .0070 .0100
miscellaneous non-ferrous workpiece materials	_	DFT-HP	KC7215	550 900 1200	.0020 . 0020 .0030	.0025 .0030 .0035	.0030 . 0040 .0055	.0040 . 0050 .0065	.0050 .0060 .0075	DFT-HD	KC7215	.0050 .0070 .0100
iron-base, heat-resistant alloys	(135-320 HB)	DFT-GD	KC720	80 100 120	.0020 . 0020 .0035	.0020 . 0020 .0035	.0020 . 0030 .0040	.0020 . 0030 .0040	.0020 .0040 .0050	DFT-HD	KC7215	.0020 .0040 .0050
cobalt-base, heat-resistant alloys	(150-425 HB)	DFT-GD	KC720	75 95 110	.0020 . 0020 .0035	.0020 . 0020 .0035	.0020 . 0030 .0040	.0020 . 0030 .0040	.0020 .0040 .0050	DFT-HD	KC7215	.0020 .0040 .0050
nickel-base, heat-resistant alloys	(150-475 HB)	DFT-GD	KC720	75 95 110	.0020 . 0020 .0035	.0020 . 0020 .0035	.0020 . 0030 .0040	.0020 . 0030 .0040	.0020 . 0040 .0050	DFT-HD	KC7215	.0020 .0040 .0050
titanium and titanium alloys	(110-450 HB)	DFT-HP	KC7215	100 130 180	.0020 . 0020 .0035	.0020 . 0020 .0035	.0020 . 0030 .0040	.0020 . 0030 .0040	.0020 . 0030 .0040	DFT-HD	KC7215	.0020 . 0030 .0040

NOTES: These are starting condition guidelines only.

The machine tool, fixturing, toolholding, part configuration, and coolant capability may significantly influence specific applications. The **bold font** represents recommended starting parameters. The regular font represents the range of cutting parameters. Use proper and safe machining practices. Make the setup as rigid as possible.

Decrease sfm as material hardness increases.

Typically, larger diameter drills require lower sfm than the recommended starting speed. Calculate sfm from the cutting diameter of the drill.